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ABSTRACT

The equation relating molecular weight distribution of a polymer to

the experimental function of concentration appearing in equilibrium

sedimentation with the ultracentrifuge is nonsolvable because it is an

Improperly Posed Problem in the Hadamard sense. For a simple distri-

bution this equation has been solved by applying a method of regular-

ization. To solve a nonsymmetrical bimodal and a trimodal distribution,

the technique of regularization had to be incorporated into a linear

programming. In the current work the regularization technique has been

incorporated into quadratic programming. This new combined method proved

to be more adequate to solve, also more complex distributions such as

tri-, tetra-, and pentamodal. In addition this technique is cheaper,

because it requires less computer time than the regularization incor-

porated into linear programming.
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SECTION I

INTRODUCTION

The increased use of polymeric materials by the U.S. Air Force has

placed an ever increasing demand upon the reliability e. g., strength, of

these materials. Many bulk property characteristics: density, shear

modulus, stress modulus, high temperature resistance, tenacity, etc. are

dependent upon the distribution of molecular weights of the macromolecular

chains composing the material.

There are many interacting morphological patterns - tie molecules,

degrees of crystallinity, varying degrees of order-which manifest various

bonding energies and/or intra-molecular interactions. These affect the

strength of a polymeric material in the bulk state. However, if the

molecular weight is too low, the strength can be affected as a result of

pure thermal (Brownian) motion. An extremely high molecular weight

might, on the other hand, inhibit relaxation or even hinder the process-

ability of the material. If molecular weight affects the final bulk

state properties to such a degree, a distribution of molecular weights

adds another variable that can greatly affect the reliability of these

materials.

For these reasons, a mathematical procedure for obtaining a molecular

weight distribution (MWD) from equilibrium sedimentation data was

necessary.

There exist differential and integral equations describing important

physical or technological systems which in general cannot be solved by

usual mathematical means and even by approximation because they belong to

the class of improperly posed problems (IPP). To this class also belongs

the equation which relates MWD to the concentration function provided by

the technique of equilibrium sedimentation.

The notion of an IPP (improperly posed problem or incorrectly

formulated problem) goes back to Hadamard (Reference 1) in conjunction
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with the Cauchy problems of potential and a number of inverse problems

for differential and integral equations. In the recent decade IPP's have

been intensively investigated. The following considerations with respect

to ill-posedness of a mathematical problem and the ways leading to their

solution is based on the ideas of Phillips (Reference 2), John (References

3, 4), Lavrentiev (Reference 5), Tikhonov (References 6-21), Ivanov

(References 22-26), and others (References 27-42). Among the class of

IPP there exists a subclass of regularizable IPP which can be solved by

applying a method of regularization.

To the subclass of regularizable IPP also belong the equation

mentioned before associated withMWD determination via equilibrium sedi-

mentation. Because of the need to correlate a NWD with physical and

mechanical properties of synthetic polymers an attempt has been made in

this laboratory to solve this particular equation. The progress of this

work has been described in a series of technical reports AFML-TR-67-121,

Parts I through VI. The first attempts to derive an MWD from these

equations without using the regularization technique were unsatisfactory

(Parts I through III). In part IV regularization was successfully applied

and good results were obtained in case of a unimodal distribution. To

solve more complex distributions, such as symmetrical and asymmetrical

bimodal and symmetrical trimodal, regularization was incorporated into

a linear programing algorithm (Part V). In Part VI this method was

experimentally verified. An artificial and a priori known distribution

of polystyrene samples was investigated. The resulting distribution was

in very good agreement with the one artificially prepared.

This regularization - linear programing technique seemed limited to a

maximum trimodal multiplicity. In addition, a large amount of valuable

digital computer time was consumed in search for appropriate regularizing

parameters.

Therefore the present report (Part VII) extends the previously

discussed modifications to include regularization into quadratic

programing. The required computation time is greatly diminished and the
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multiplicity capable of being resolved now includes a tetramodal MWD.

This paper is divided into sections, such that, once the mathematical

definition of an ill-posed problem is, specified, the technique of

regularization used later in the discussion, will be explained. This

technique leads to better results if it is incorporated in the quadratic

programing. However, before discussing this latest refined combination

of methods, a brief discussion of a quadratic programing technique

follows. Then the actual Fredholm Integral of the First Kind used along

with examples of its ill-posedness is illustrated. Finally, the incor-

poration of regularization into quadratic programing with its application

to a specific kernel will be presented.

The preceding AFML-TR-67-121 reports previously referred are:

Part I , M. T. Gehatia (June 1967).

Part II , M. T. Gehatia and D. R. Wiff (April 1969).

Part III, R. R. Jurick, D. R. Wiff and M. T. Gehatia (May 1970).

Part IV , M. T. Gehatia and D. R. Wiff (August 1970).

Part V , D. R. Wiff and M. T. Gehatia (February 1971).

Part VI , M. T. Gehatia and D. R. Wiff (November 1971).
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SECTION II

ILL-POSED PROBLEM AND REGULARIZATION

Let F and U be some complete metric spaces. Let Af be a function

with domain of definition F and the range of values U. Consider the

equation

Aft U = 0 (1)

The problem of solving Equation 1 for a set {f} given a set {u} and

knowing the functional form of A is a properly posed problem if the
following conditions are satisfied:

(la) The solution of Equation 1 exists for any ueU.

(lb) The solution of Equation 1 is unique in F.

(Ic) The solution of Equation 1 depends continuously on u in the

metrics of F and U. In such a case there exists a function Ou defined

and continuous over all U, and 0 is an inverse operator of A, where

Ou = A- u = £ = RIU()] (2)

If even one of the conditions (la), (lb) or (1c) is not satisfied

[u = Af] is an IPP. In such a case the function 0 either does not exist

or it is not stable and not reliable. Many expressions of mathematical

physics include linear operations. In this case U and F are Banach

Spaces and A is a linear operator. The Banach Spaces U and F encountered

in most cases are the known functional spaces C Z, LpI, Wb, H, S, . .with

the carriers in some n-dimensional space of the independent variables or

on any part of the spaces of independent variables. The first require-

ment of correctness is that the problem under consideration should not

be overdetermined; second that the solution is unique, since the right-

hand side of Equation 1 are real quantities obtained by measurements;
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and the third condition requires the continuity of the inverse function

Ou. It was felt for a long time that if at any point u the function Ou

was discontinuous, then the solution f could not be uniquely recovered

from the right hand side u. Hadamard introduced the notion of well-

posedness by giving an example of an IPP which became a classical text-

book example. This example was the famous Cauchy problem for the LaPlace

equation. Hadamard did not believe that an IPP represents any real

physical system. This later conclusion proved to be erroneous, and many

real equations of mathematical physics lead to problems which are im-

properly posed in tPe sense of Hadamard.

We now formulate an approach to the question of well-posedness of

problems of the type under consideration. The approach consists of

changing the notion of correctness by having requirements different from

(la), (Ib), and (1c) above. In addition to the spaces U and F and the

operator A, let there be given some closed set ýcU. According to

Tikhonov, the solution of Equation 1 is properly posed if

(2a) It is "a priori" known that the solution f exists for some

class of data and belongs to the given set 4, fe4.

(2b) The solution is unique in a class of functions belonging to 0.

(2c) Arbitrarily small changes in u do not carry the solution f

out of ( corresponding to arbitrarily small changes in the solution f.

Upon denoting 0A the image of 0 after the application to the space F

of the operator A, requirement (2c), can be restated as

(2c) 2 The solution of Equation 1 depends continuously on the right-

hand side of u on the set 0A'

If 0 is a compact set than according to Tikhonov, if Equation 1

satisfies (2a), and (2b), there exists a functionca (c), where r is a

variable parameter, such that

(a) a(T) is a continuous nondecreasing function with a(O) = 0.

5
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(b) for any fl, f 2 e1 satisfying the inequality p (Afl, Af2) <

where p (#4) is the metric or measure of distance between * and 0 and c

is a constant, then the following holds

P (f 1 0 f 2)• a (C)

That is, if a problem is improperly posed in the metric spaces F and U,

it becomes properly posed in the usual sense if F is replaced by the sub-

spaces $ and @ A

The reason for examining the spaces F, U together with $, A is due

to the fact that in real problems the errors introduced from experimental

measurements into the determination of a set {u} usually result in some

u being outside @A" The regularization technique formulated by Tikhonov

gives the possibility of constructing an approximate solution with a

certain guaranteed degree of accuracy even though the exact solution of

Equation 1 with approximate data either does not exist or greatly deviates

from the "true" solution.

6
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SECTION III

QUADRATIC PROGRAMING

Consider the quadratic programming problem of finding {xi},

i = 1, --- , n which maximizes

4 n nL. b~x,- Y_, 2- xixjgij
i=l i=l j=l (3)

subject to

ki < dk ; k = ,--- , m

(4)

and the non-negativity conditions

(5)
x. > 0 i = ,---,n

where gij are the elements of a symmetric, positive semi-definite matrix,

i. e.,

g g (6)
7ij = 9ji
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and

n n

± ± gjx~xk >! 0
j=1 k=I (7)

for all xj. It is always possible to write a quadratic function in the

form of Equation 3 such that Equation 6 is satisfied. The restriction

Equation 7 ensures that the solution of Equation 3 is convex. There have

been many algorithms devised for solving this problem. A few of these

are one due to Dantzig (Reference 43), one due to Thiel and Van de Panne

(Reference 44), another due to Lemke (Reference 45); two based on ex-

tensions of the simplex algorithm encountered in linear programing one

by Wolfe (Reference 46) and another by Beale (References 47, 48). In

addition, there are excellent review articles and/or books written on the

details involved in solving Equations 3, 4, and 5 (References 49-54).

In matrix notation Equations 3 through 5 can be written as maximize,

Sx'G (8)B1 X - X1 GX(8

subject to

CX < D (9)

and

xŽ 0 (10)

where G is positive semi-definite, i.e., X'GX > 0 for all values of X.

Here the "prime" indicates the transpose.

The well-known Kuhn-Tucker conditions assert that X is a solution if

and only if there exists a vector W such that

8
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W 2! 0 (11)

W'D - W'C X = 0 (12)

GX + C'W - B > 0 (13)

and

X'GX + X'C'W - XB = 0 (14)

By making the following substitutions

V = GX + C'W - B > 0 (15)

and

Y = D - C X > 0 (16)

the Kuhn-Tucker conditions can then be stated as finding X, W, V and

Y, all > 0, such that

C E 0 0 (17)

where E are unit matrices and such that

[vw] [ = + WI 0 (18)

9
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In the following sections the method used to incorporate the regulari-

zation technique of Tikhonov into the quadratic programing scheme out-

lined above will be discussed.

10
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SECTION IV

REGULATION OF ILL-POSED INTEGRAL EQUATIONS
OF THE FIRST KIND

As an example of the application of Tikhonov's regularization tech-

nique, consider a Fredholm integral equation of the first kind,

u(6) = Q [4,f(m)] M K(en) f (m)dmneo< el (19)

M
0

Assuming that certain u(s) functions exist which do not have corresponding

f(m) solutions fulfilling conditions (la), (lb), and (1c), means Equation

19 is an IPP. Then upon application of Tikhonov's ideas (Equation 2) to

a special function u(E) there corresponds a solution:

f~) RIm,u(e)]

(20)

Also let an approximating function G(ý) for U(ý) be given, such that
11 U - 5 11 < 6, where 6 is known. It is then required to find f(m), an

approximation to f(m) with an assigned precision Ilf - f II <£ if 6

is sufficiently small. Letting Mo = 0; M = Mmax; Eo= 0 and El = 1;

assuming K(ým) is continuous and if for u(e) = 0 there exists just one

solution f(m) = 0; then instead of using the conventional functional

of calculus of variations

N [f(m); ~) f {Q~ f m)]d (21)

11
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Tikhonov suggests application of the functional

Ma [f(m); T(•)] = N [f(m); u(4) ] + a Q (n) [f(m) (22)
n

where 5(n) is the regularizing functional

M N+I M
Q(fl)(f)=j ml P. (m) [f(i(m)Ij dm

0 i= (23)

the Pi (m) are positive continuous functions, f(') is the i th derivative

with respect to m and a is an arbitrary parameter which minimizes the

functional Ma.n

Application of the Eulerean equation and applying boundary conditions

results in

La [f] = a,¶ ( i+1 d_ P.(m)

n dmInI dmin'i

M

- f(i, 4 )f(4)d4 -7(m) =0
(24)

with boundary conditions

= ~[ Pjin)f (in() ] 41
1=(25)

M=O,M
max

(U = +,2...,N+ 1)

12
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where

K(m, ) K(6,m)K( e de1 (26)
0

and

•1

"9(m) J K( 6,m) Me) d (27)

This procedure was applied to a kernel of the form

K(6,s) = e-pse / (les(28)

appearing in the theory of equilibrium sedimentation of polydisperse

system, by initially assuming f(s) = const. Xs2(l-s) 2, the set {7} was

computed using Equation 19. M of Equation 22 was then minimized by

application of the regularizing technique resulting in the approximate

solution n(s).Figures 1 and 2 show the results of the computation with-

out regularization and with regularization, respectively (Reference 55).

During the application of this technique to a specific physical

problem it was observed that when f(m) was multimodal (bimodal or higher)

then portions of fP(m) were negative. From physical considerations of

the problem of determining a molecular weight distribution from data

obtained from an ultracentrifuge equilibrium sedimentation experiment for

which the kernel in Equation 28 is applicable, all fa(m) should be

positive. Using these considerations regularization was incorporated

into (LP) linear programing (Reference 56) using Dantzig's Simplex

algorithm (Reference 57). The regularized LP technique gave good results

up through a trimodal distribution. For higher multimodal distributions

13
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the computed ?(m) were very erratic and the computational error was

large. However, since the functional to be minimized (Equation 22) is
quadratic, it seemed only natural to apply quadratic programing.

In the following the incorporation of regularization into the quadratic

programing algorithm given by Boot (Reference 54) is discussed.

14



AFML-TR-67-121
PART VII

SECTION V

INCORPORATION OF REGULARIZATION
INTO QUADRATIC PROGRAMING

In all applications involving the kernel given by Equation 28 it has

been found that sufficiently satisfactory results were obtained when the

Pi(m)'s in Equation 23 were equated to constants. Therefore the functional

in Equation 22 to be minimized was restricted to become

Ma [f(m) M(ý)] = N [f(m) 1; 7() + (n)[f]

n (29)

where now
M

S(n) [f] m [f(n)(m)] dm (30)

0

f (n) (m) being the nth derivative of f(m) with respect to m,(f(n)(m) :

dnf(m)/dmrn). The nth derivative of f(m) for n = 1, 2, 3, . can be

approximated by various numerical techniques. In this specific case,

assume h is the constant increment associated with the mesh for m. Then
f(n) can be approximated by
J

n

f) =) I (k)

k=O kk ( J-p+k (31)

where(•)are the binomial coefficients; and p n for n odd; and p n-1

for n even. Then Equation 30 becomes

(n , n°- •z=Z. o(p)( n)(-') -O .,-okc
L ý Z k It--p+k j(32)

15
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'which in matrix notation will be

[ ' A f (33)

where A is a matrix whose elements are zero except for diagonal and near

off diagonal elements for which if r = j - p + k and s = i - p + 1 (as in

Equation 32) then

r Os -:X o (34)

with the boundary conditions 1 < r < J and for s < 1, then s = Isl + 1 or

s > J, then s = 2J - s + 1.

Next consider Equation 21. Let us express this in matrix notation,

where as in Equation 1 the operator (kernel multiplied by appropriate

integration constants for numerical evaluation) will be designated by A

= {ai 1; u = {ui} i = 1,2,...,I; and f = {f1} j = 1,2,...,J. Thus

Equation 21 can be expressed as

f( ijofj-iu) -d f'A'Af-2u'Af+u'u1=1 ": (35)

Neglecting the last term in Equation 35 which is a constant, and using

the result of Equation 33, the functional le of Equation 29 expressed in

matrix notation is

a (i
Mn a fAýAf - 2uAf+ anf' n) (36)

16
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or upon dividing by 2 to be in correspondence with Equations 3 and 8 and

multiplying by (-I), the functional to be maximized will be

_a Wn

Mn = u Af----f'[IAA+LanA fn (37)

J

(Equation 8), subject to I t. f. < const. and all fi> 0.

j=l

This is now a suitable quadratic program formulation. In the

following a particular kernel will be used and a computer simulation

experiment where-in analogous experimental data {u : u = Af-} is generated

from an assumed set {-} and the back solution, determining f from i will

be discussed. Since in a real experimental situation the original f

would be unknown, f and f are presented only for illustrative purposes.

All computations were performed so as to choose that set of a n s (usually

a single an sufficed) which yielded a minimum for IiJ - ull i. e., the

error criterion was to choose that {f}n in correspondence with inf { 11

- ll}. n

17
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SECTION VI

APPLICATION AND RESULTS

The first step in proving the utility of Equation 37 was to establish

a kernel which represented an IPP in a real physical situation. Such an

expression is Equation 28. The computational work was then related to

the following integral equation of the first-kind.

I3 me4
f(m)dm (38)

where a = const. and 0 < E < 1. In all cases a = 4 x 10-5. For unimodal

and trimodal distributions, ?(m), a 41-point mesh was used for E and m;

for a tetramodal distribution a 51-point mesh and for an asymmetrical

bimodal and pentamodal a 59-point mesh was used. That is, if N equals

the number of intervals in our mesh then = nrl/N where, n1 = 1, 2,

N - 1 and m = n2mmax/N, n2 = 1, 2, ... ,N - 1. All integrations were

performed using Simpson's quadrature formula for equidistant points. It

was felt that in real problems this would be sufficient and it was not

the purpose of this research to study how to minimize machine round-off

errors.

An initial functional distribution f(m), unimodal through pentamodal,

was assumed. Then Equation 38 was used to compute a set of values for

VW•). These were then assumed to be our experimental values.

Next, quadratic programing with regularization was applied (Equation

37). For a given an, the corresponding set Mff which minimized M1a was
nan n

computed. Then through application of Equation 38 the corresponding set

{u (0)}a was evaluated. The a which yielded inf {JII- uI(} was thean n

final an used. Further searching for an an with more significant digits

would have decreased the error analysis criterion but for our purposes

two significant figures were considered satisfactory. Finally the

initial f(m) and the f(m) were plotted in order to compare the distri-

butions.

18
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These distributions along with the computed data are presented in

Figures 2 through 7 and Tables I through V, respectively. To show the

need for regularization some figures are presented with the results

obtained when no regularization - only quadratic programing was used. In

addition it should be noted that the fewer points per mode the less the

precision. This is especially noticeable when comparing the unimodal and

pentamodal distributions. In the former, 41 points were used per mode

whereas in the latter there were only about 11 or 12 points per mode.

Due to round-off errors, storage space in a high speed digital computer,

and computational time the present computation was limited to using no

more than about 11 points per mode for the pentamodal distribution. As a

demonstration of this necessity to sample a sufficient number of molecular

weights, the following test was performed. Starting with nine molecular

weights the initial f(m*)was computed. From these functional values the

corresponding set u (•*) was inferred on a 41-point mesh. This number

of values was used to compute the corresponding set fa(m*), in the same

fashion as f(m*). Finally, the set fa(m*) was used to compute an anal-

ogous set U (E*). Figure 8 shows a comparison of u (ý) computed from the

T (m) with 41 molecular weight (Figure 3) with U (•*) and U (•*) computed

using a nine-point molecular weight mesh.

19
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SECTION VII

CONCLUSIONS

The need for knowing the molecular weight distribution of synthetic

polymers first led the authors to the ill-posed inverse problem associated

with Equation 38. Scientists have investigated the feasibility of this

determination for the past 30 to 40 years. All types of well founded

mathematical theories were applied, but each would, in general, only be

applicable for specific types of distributions. It was only recently

realized that, instead of apologizing for the kernel of Equation 38 being

ill-conditioned, the entire problem was mathematically ill-posed in the

Hadamard sense. It should be challenging to derive another expression

for determining a molecular weight distribution from equilibrium sedi-

mentation data which might be a well-posed problem. Meantime, (since

time and economics prevented such a diversion) application of Tikhonov's

technique of regularization has enabled reliable results to be obtained.

Good results were obtained for unimodal through tetramodal distributions.

Poor results were obtained for a pentamodal distribution. The results

indicate that even if the experimental data u(E) are precise, a "poor

fit" MWD will be obtained if the sampling size of molecular weights is

too small. It can be estimated that a lower limit on the number of

molecular weights per mode or per peak has to be about 20 in order to

obtain a good "fit". Ten molecular weights per peak gave poor results.

To assure such a good "fit" a bimodal distribution would require a 40-

point mesh minimum. Unfortunately, because of the computer storage

limitations, as well as an extensive computation time, the mesh could

not exceed 61 points. This number was adequate to compute a trimodal,

barely adequate to compute a tetramodal distribution, and entirely in-

adequate to compute a pentamodal distribution. Considering these

limitations, the computation of higher multimodal distributions were not

attempted.

In addition, a larger molecular weight mesh would also require a

corresponding larger number of discernible u (i). For the ultracentri-

fugal techniques this would require the use of longer column lengths for

solutions investigated,
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APPENDIX

QUADRATIC PROGRAM ALGORITHM

Computer programs were written to solve the following problemsFind

the values of xI, x29...,xn that maximize

[1b 11  b 12 b In-ilb bi I ( !
(2 21 22 2n21a 2 "'" -2' 1 2... X n)i

a an)

nL bn2 nn n

subject to

C 11 C 12In

kI k2 kn n k

xT -ý 0 i=1,2,...,n

where

b 11 b 12 bI
2 b22.b." is positive semi-definite

_b bn 1 b n2 ... nn

In matrix form we have:

Find the value of x that maximizes

A'x - 1/2 x' BR

21



AFML-TR-67-121
PART VII

subject to

CX<D

X>O

where B is positive semi-definite, i. e., X'BX>O for all values of X.

"This problem can be reformulated by introducing k non-negative slack

variables (yl Y2 ... Yk) Y (Reference 53), and stating the problem as:

Find the values of X, Y that maximize

subject to

[C 1]r = D

X >0

y>O

Using the Kuhn-Tucker conditions, it can be shown that [X Y]' where

prime denotes transpose, is the solution to this problem if and only if

1. [X Y]' > 0

2. There exists a vector [V W] of non-negative elements such that

Iv w]' I = v'x + w'Y = 0

3. The vectors [X Y]' and [V W]' satisfy the system of linear equations

•0 ° 1 - [ = [ A

I 0

Dantzig's alogrithm as presented by Boot (Reference 53) is used. The

procedure begins with a basic feasible standard form solution (X Y V W)' =

(0 D -A 0)' of the system of linear equations above. The system of

linear equations has m + k equations and 2(m + k) unknowns.
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A basic solution is a. solution determined by setting m + k of the var-

iables equal to zero and solving the remaining variables. A basic feasible

solution is a basic solution that has only non-negative values for [X Y].

Standard and nonstandard basic feasible solutions are defined as follows.

Let Z' = [X Y]' and U' = [V W]'. If a basic feasible solution is such

that no pair of corresponding Z and U variables consist of two nonzero

elements, the solution is in standard form, otherwise the basic feasible

solution is in nonstandard form.

In a basic feasible solution of the system of linear equations, the

variables that are set equal to zero are called nonbasis variables, the
remaining are called basis variables and comprise the basis. The algo-

rithm consists of adding a variable to the basis and deleting a variable

from the basis. This is better explained by writing the system of linear

equations as a linear combination of vectors equal to a vector.

Let Pm equal the mth column of the matrix

LB U 11-C
and let P1 = [-A D]. Then the system of linear equations can be written

0

Z1 P1 + Z2 P2 + + Zn+k + UIPn+k+l + U2Pn+k+2 + ... + U n+kP2N+2k = Po

Let Pm' m = 1,2..., n + k be the values of the basis variables and let

m= the subscript of the associated P vector for the m th basis variable

m :1,2,...,n + k

The rules for adding a variable to the basis are:

1. If the basic feasible solution is in standard form, that particular

non-basic Z-variable should enter the basis whose corresponding Uh has

(in absolute value) the largest negative Ph'

2. If the basis feasible solution is nonstandard and (Zk, Uk) is the

nonbasic pair, then Uk should enter the basis.
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Let the P vector corresponding to the variable that is to enter the

basis be represented by (T T2 ... T )' The rules for deleting a
i 2 n+k

variable from the basis are:

1. If the basic feasible solution is standard, let Zh be the variable

that is to enter the basis. Find the value of m that corresponds to the

smallest positive ratio Pm/Tm while only considering those m's such that
jm c {l,2, ... ,n + k, n + k + h).

2. If the basic feasible solution is nonstandard, let (Zh, Uh) corre-

spond to the pair that are both basic. Find the value of m that corre-

sponds to the smallest positive ratio Pm/T while only considering those

m's such that jm ifl,2,...,n + k, n + k + hl

The algorithmic recycling is terminated when all of the basic

variables are nonnegative, i. e., when Pm > 0; m = 1,2,...,n + k.
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TABLE I

COMPUTATIONAL RESULTS FOR THE UNIMODAL DISTRIBUTION

FROM A 41-POINT MESH

No. m f(znpa 10 6 I(m) xlO0

1 3,571 0.108 0.200 3.2052 32061
3 10,714 0.880 0.791 2.7151 2.7159
5 17,857 2.200 2.170 2.3069 2.3075
7 25,000 3.858 3.931 1.9660 1.9664
9 32,143 5.670 5,737 1.6806 1.6809

11 39,286 7.474 7.460 1.4410 1.4413
13 46,429 9.135 9.061 1.2393 1.2396
i15 53,571 10.542 10.477 1. 0692 1.0694
17 60,714 11.609 11.623 0.9252 0.9254
19 67,857 12.274 12.356 0.8031 0.8033
21 75,000 12.500 12.578 0.6992 0.6993
23 82,143 12.274 12.276 0.6106 0.6107
25 89,286 11.609 11.523 0:5348 0.5349
27 96,429 10.542 10.438 0.4698 0.4699
29 103,570 9.135 9.095 0.4139 0.4140
31 110,710 7.474 7.554 0.3657 0.3658
33 117,860 5.670 5.813 0.3240 0.3241
35 125,000 3.858 3.912 0.2879 0.2880
37 132,140 2.200 Z.076 0.2565 0.2566
39 139,290 0.880 0.761 0.2291 o.2292
41 146,430 0.108 0.270 0.2052 0.2053

= 5.8x 10" IIu-'a = 3.35x 10 4

= Number/43
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TABLE II

COMPUTATIONAL RESULTS FOR THE ASYMMETRICAL BIMODAL

DISTRIBUTION FROM A 59-POINT MESH

No. m f(m) x 106 ra(m) x 106 u~t) "()

1 2,500 0.173 0.110 2.8642 2. 8644
3 7,500 1.388 1.565 2.5625 2.5727
5 12, 500 3.401 3.639 2.3163 2.3164
7 17,500 5.834 5.484 2.0906 2.0908
9 22,500 8.259 7.587 1.8915 1.8916

11 27,500 10.706 10.483 1.7154 1.7156
13 32,500 12.656 13.181 1.5594 1.5595
15 37,500 14.047 15.050 1.4208 1.4209
17 42,500 14.769 15.621 1.2975 1.2976
19 47,500 14.769 14.808 1.1875 1.1876
21 52,500 14.047 13.408 1.0891 1. 0892
23 57,500 12.656 11.481 1.0010 1.0010
25 62,500 10.706 9.538 0.9218 0.9216
27 67,500 8.359 7.974 0.8506 0.8506
29 72,500 5.834 6.434 0.7863 0.7863
31 77,500 3.520 4.863 0.7282 0.7282
33 82,500 2.316 3.853 0.6756 0.6756
35 87,500 2.385 2.926 0.6278 0.6278
37 92,500 3.670 2.530 0.5844 0.5844
39 97,500 5.057 3.567 0.5448 0.5448
41 102,500 6.184 5.749 0.5086 0.5086
43 107,500 6.914 7.600 0.4755 0.4755
45 112,500 7.167 7.632 0.4452 0.4452
47 117,500 6.914 6.817 0.4173 0.4173
49 122,500 6.184 6.124 0.3917 0.3917
51 127,500 5.057 4.902 0.3681 0.3681
53 132,500 3.670 3.765 0.3463 0.3463
55 137,500 2.212 2.483 0.3261 0.3261
57 142,500 0.929 0.964 0. 3075 0. 3074
59 147,500 0. 119 0.000 0. 2902 0.2901

a 7.9x10 7  IIu-'II = 8.73x10 5

S5.6 x 10-1 = Number/61
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TABLE mI

COMPUTATIONAL RESULTS FOR THE TRIMODAL DISTRIBUTION

FROM A 41-POINT MESH

No mx 16 (m) x 106
No m 1(m) xo 10 (xnx10

1 3,571 0.585 0.839 3.2501 3.2524
3 10,714 3.964 3.584 3.7147 2.7165
5 17,857 7.918 8.440 2.2798 2.2812
7 25,000 10.452 10.613 1.9252 1.9264
9 32,143 10.553 9.861 1.6351 1.6360

11 39,286 8.182 7.536 1.3967 1.3975
13 46,429 4.283 4.940 1.2001 1.2008
15 53,571 2.939 4.344 1.0372 1.0379
17 60,714 6.171 6.339 0.9017 0.9022
19 67,857 0.546 8.499 0.7884 0.7889
21 75,000 10.834 9.239 0.6932 0.6937
23 82,143 9.546 8.936 0.6129 0.6133
25 89,286 6.171 7.,550 0.5447 0.5452
27 96,429 2.939 5.541 0.4867 0.4871
29 103,570 4.283 4.221 0.4369 0.4373
31 110,710 8.182 5.608 0.3941 0.3945
33 117,860 10.553 0.552 0.3570 0.3574
35 125,000 10.452 11.789 0.3248 0.3252
37 132,140 7.918 8.845 0.2966 0.2970
39 139,290 3.964 3.223 0.2719 0.2723
41 146,430 0.585 0.787 0.2501 0.2504

a2 = 1.0x10 6 xu = 8.5029x10

G3 = 3.2 x 10- 9  = Number/43

a4 = 1. Ox 10-6
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TABLE IV

COMPUTATIONAL RESULTS FOR THE TETRAMODAL DISTRIBUTION

FROM A 53-POINT MESH

No. m f(m) x106  m) 106 u(•)

1 2,778 0.592 0.000 3.2556 3.2556
3 8,333 3.991 3.374 2.8297 2.8297
5 13,889 7.910 11.405 2.4678 2.4678
7 19,444 10.329 12.895 2.1595 2.1595
9 25,000 10.251 6.929 1.8964 1.8963

11 30,556 7.706 0.000 1.6712 1.6711
13 36,111 3.807 2.223 1.4780 1.4780
15 41,667 3.064 8.468 1.3120 1.3119
17 47,222 6.616 13.278 1.1688 1.1688
19 52,778 9.731 13.488 1.0450 1.0450
21 58,333 10.583 9.582 0.9378 0.9378
23 63,889 8.841 3.356 0.8446 0.8445
25 69,444 5.199 0.000 0.7633 0.7633
27 75,000 2.754 0.593 0.6923 0.6923
29 80,556 5.199 3.511 0.6300 0.6300
31 86,111 8.841 11.522 0.5752 0.5753
33 91,667 10.583 16.024 0.5269 0.5270
35 97,222 9.731 14.384 0.4842 0.4842
37 102,780 6.616 7.620 0.4463 0.4463
39 108,330 3.064 1.743 0.4126 0.4126
41 113,890 3.807 0.000 0.3824 0.3825
43 119,440 7.706 1.256 0.3555 0.3555
45 125,000 10.251 9.745 0.3312 0.3313
47 130,560 10.329 16.270 0.3094 0.3095
49 136,110 7.910 10.028 0.2897 0.2898
51 141,670 3.991 2.310 0.2718 0.2719
53 147,220 0.592 0.000 '2.556 0.2557

a2 =2.1x10 7  u u- = 4.0120 x 10

3 =7. 0x 10-10 = Number/55
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TABLE V

COMPUTATIONAL RESULTS FOR THE PENTAMODAL DISTRIBUTION

FROM A 59-POINT MESH

No. m f(m) x 106 ?%(m) x 106 ;T( )

1 3,000 0.593 Z.609 3.8132 3.8089
3 9,000 3.853 Z.747 3.2709 3.2683
5 15,000 7.245 8.257 2.8166 2.8153
7 21,000 8.742 12.430 2.4351 2.4347
9 27,000 7.606 9.559 2.1138 2.1141

11 33,000 4.391 5.370 1.8425 1.8433
13 39,000 2.281 2.880 1.6128 1.6139
15 45,000 4.922 3.231 1.4177 1.4190
17 51,000 7.923 7.604 1.2516 1.2529
19 57,000 8.687 4.621 1.1096 1.1110
21 63,000 6.843 4.082 0.9880 0.9892
23 69,000 3.329 6.802 0.8834 0.8845
25 75,000 2.592 10.928 0.7931 0.7941
27 81,000 5.935 5.983 0.7150 0.7159
29 87,000 8.410 0.000 0.6471 0.6478
31 93,000 8.410 4.985 0.5879 0.5885
33 99,000 ,5.935 11.253 0.5362 0.5366
35 105,000 2.592 20.421 0.4907 0.4910
37 111,000 3.329 1.102 0.4507 0.4509
39 117,000 6.843 0.000 0.4153 0.4154
41 123,000 8.687 0.000 0.3839 0.3838
43 129,000 7.923 0.000 0.3560 0.3558
45 135,000 4.922 14.118 0.3310 0.3308
47 141,000 2.281 4.616 0.3087 0.3083
49 147,000 4.391 1.905 0.2886 0.2881
51 153,000 7.606 14.409 0.2704 0.2699
53 159,000 8.742 7.154 0.2540 0.2534
55 165,000 7.245 0.000 0.2391 0.2385
57 171,000 3.853 0.000 0.2256 0.2249
59 177,000 0.593 7.073 0.2132 0.2125

-10 - 34.0x 10 Iu - 1. 1093x 10-

a 3 = 1.5x 10- 8  i= Nurnber/61
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c PROGRAM REQUAD
G
G PURPOSE
C. PROGRAM READS ALPHA(NLAST) AS DATA FROM NFIRST
G THROUGH NCOOE. THEN PROGRAM CONTINUES FROM

Lo NCOOE+1. THROUGH NUPP SEARCHING FOR MINIMUM FOR
C EACH DERATIVE RETAINING PREVIOUS VALUES. IF

NOODE = 0 , SEARCH4 BEGINS WITH NFIRST.
IF NFLAG.GT.0 PROGRAM READS ONE VALUE OF ALPHA AND

C COMPUTES FOR ONLY THIS ONE VALUE

C. USAGE
C PROGRAM REQUAO(TAPESOUTPUTTAPE6=OUTPUT)
C

PROGRAM REQIUAD(CTAPES, OUTPUT, TAPEB=OUTPUT)
COMMON/ZYT/IUXKSXZBK, 8,ZPAALPHARXXUPDLXDLS,
'IMAXNMAXNF
iIRSTNLASTFACTOTCOSTTPIV

C, DIMENSIONS FOR COMMON
DIMENSION U(S0),XK(6O,60),S(60),X(60),Z(60),B3K(60,6O),
'B (60) , ZP( 60)
lA(60,60),ALPHA(i0),V;ý60),IXX(60),IUP(60)
DIMENSION IBASIS(6O):,RESULT(60)

READ (5,200)
WRITEC6, 1000)
WRITE(6,200)
WRITE(6,i0iO)

C. NMAX AND IMAX MUST BE ODD INTEGERS
REAO(5,201) NNMAXIIMAXW1,W2
NMAX = NNMAX - 2
LMAX = NMAX + 1
IMAX = IIMAX
OLS = FLOAT(NNMAX-i)I(W2-Wi)
DLX = FLOAT(IIMAX-i)
DO 1 1 liIMAX
X(I) = FLOAT(I-1J/DLX

I CONTINUE
COF = 0.
DO 2 I = iNMAX
S(I) = Wi. + FLOAT(I)fOLS
Fi = 0.
IF(S(I).GT.W2.OR.S(I).LT.Wi) GO TO 53
Al = (S(I) - Wi)"?2
A2 = (5(I) - U?)"?2
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F1 Ai*A2
53 Z (I) =F1.

KNUtI = 1/2
JNU?4 = (1+1)/2
IF(JNUM*NE*KNUMt) GO TO 51
SIG = 2o
GO TO 52

51. SIG =4.
52 COP = COP + SIG*Z(I)f(3**OLS)
2 CONTINUE

DO 5 I = 1,NIAX
5 Z(I) = Z(I)/COF

c XSIG = LAMIBDA IN THE THEORY, SEE PUJITAIS EQUATION
REAO(5,103) XSIG
DO 4 1 = lItIAX
COEF = 0.
0O 3 J = lN?4AX
Al = XSIG*S(J)
A2 = Al
A3 =EXP(-Ai*X(I))
A4 = EXP(-AI)
A5 =1t - A4
A6 =A2*A3/A5
XK(IJ) = A
KNUM J/2
JNUM = (J+1L/2
IF(JNUtI.NE*KNUtI) GO TO 42
SIG = 2.'
GO TO 43

42 SIG =4.

43 COEP COEF + SIG*XK(IJ)*Z(J)/(3**OLS)
3 CONTINUE

C: CALCULATION OF U(ZI) BY SINPSONOS FORMULA
4 U(I) = COEF

CALL REG2
81 CONTINUE

READ(5 ,i0i) NCODENFIHST, NUPP, NFLAG, FACT0,TCOSTTPIV
0O 30 NLAST = NFIRST,!4IJPP
IF(NLAST*LE*NCODE) GO TO 31
IF(NFLAG.GT.0) GO TO 40
READ(5,i00) LPHAiLP4ft2
LXP = IABS(LPHA2 - LPHIAi) + 1
NUM = 0
.0O 20 11 = igLXP
IXP = LPHAI +II - i
00 21 KL = 1,9
ALPHA(NLAST) = FLOAT(KL)*'iO."IXP

C OBTAIN MODIFIED MATRIX
CALL REG3
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c OBTAIN INVERSE SOLUTION
CALL QUAD1(RESULTIBASIS)
DO 33 I = 1,LMAX

33 ZP(I) = a*
00 32 I = 1,LMAX
J = IBASISMI)
IF(J.GT.LMAX) GO TO 32
ZP(J) = RESULT(I)

32 CONTINUE
C EVALUATE ERROR

CALL REG4tUAVG)
WRITE(6,4000) ALPHA(NLAST),UAVG

4000 FORMAT(iH ,IP2Ei2.5)
IF(KL.EQ.1oAND.II.EQoi) GO TO 22
IF(UAVG.GE.AVGi) GO TO 28
AVGi = UAVG

C STORE MINIMUM ERROR AND CORRESPONOING ALPHA
XM = ALPHA(NLAST)
NX = IXP
NUM = 0
GO TO 21

22 AVG1 = UAVG
C STORE FIRST ALPHA USED AND ASSOCIATED ERROR

Xl = ALPHA(NLAST)
NX = IXP
GO TO 21

28 CONTINUE
21 CONTINUE
20 CONTINUE
23 CONTINUE

IF(XM.EQIOt.NX) GO TO 60
XMM = XM - IO. 4 'NX
GO TO 62

60 XMM = 9.'tO.*(NX-1)
62 CONTINUE

DO 25 I = 1,20
ALPHA(NLAST) = XHM + FLOAT(I-i)'iO.(NX-i)
CALL REG3
CALL QUADI(RESULTIBASIS)
00 55 K = 19LMAX

55 ZP(K) = 0.
00 56 K = iLHAX
J = IBASIS(K)
IF(J.GT.LMAX) GO TO 55
ZP(J) = RESULT(K)

56 CONTINUE
CALL REG4(UAVG)
IFCI.EQ.I) GO TO 26
IF(UAVG.GE.AVGI) GO TO 25
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AVGi : UAVG
XM = ALPHA(NLAST)
GO TO 25

26 AVGI = UAVG
XM = ALPHA(NLAST)

25 CONTINUE
27 ALPHA(NLAST) = XM

GO TO 61
40 READ(59i02) ALPHA(NLAST)

0 IF COMPUTATION PROCEEDS FOR ONLY ONE ALPHA BEGIN
C HERE

61 CONTINUE
C OBTAIN MODIFIED MATRIX

CALL REG3
0 OBTAIN INVERSE SOLUTION

CALL QUADI(RESULT9IBASIS)
DO 34 I = iLMAX

34 ZP(I) = 0o
DO 35 I = 19LMAX
J = IBASIS(I)
IF(J.GT.LMAX) GO TO 35
ZP(J) = RESULT(I)

35 CONTINUE
C EVALUATE ERROR

CALL REG4(UAVG)
DO 24 I = .ItIAX

C, Z(I) = ORIGINAL DISTRIBUTION
G ZP(I) =-BACK SOLUTION
D U(I) = CORRESPONDS TO INPUT DATA, COMPUTED USING
c Z(I)
"C UP(I) = BACK SOLUTION COMPUTATION
C S(I) = VARIABLE FOR Z(I)g CORRESPONDING TO
C MOLECULAR WEIGHT

WRITE(6,2001) IgZP(I),IZ(I),IUP(I),IU(I),I,S(I)
24 CONTINUE

WRITE(6,2000) (IALPHA(I)pI NFIRSTqNLAST)
WRITE(6,2002) UAVG
WRITE(6,I04) XSIG
WRITE(6,1000)
GO TO 30

31 REAO(5,102) ALPHA(NLAST)
30 CONTINUE

READ(5,100) ITi9IT2
IF(ITiEQ90) GO TO 99
GO TO 81

99 CONTINUE
WRITE(69io00)
WRITE(6,7000)
STOP
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1.00 FORMAT(213)
101. FORMAT(412,IP3EB.i)
102 FORMAT(iPEI4.T)
103 FORMAT(E10.3)
104 FORMAT(1M ,?KXSIG = ,iPEi0.3)
200 FORMAT(72H

201 FORMAT(212,1P2E1.2.5)
300 FORMAT(iOF8.5)

1000 FORMATMHI)
1001 FORMAT(/)
2000 FORMAT(H 16HALPHA(1I2#4H) = ,iPEi4.7)
?001 FORMAT(H ,THZ"'CALC(,12,p4H) = ,Ei2.5,2X,THZeTRUE(,Ir2,4

*H) = ,E12.5,
12XIHCALC U(,I124H) = ,E12.5,2X9 2HU(112,fH) = #Ei2*512
*X,2HS(,12,44
2) = ,Ei2.5)

2002 FORMATCIH ,3OHSQRT OF SUM (UP(I)-U(I))"*2 = ,E12*5)
T000 FORMATCiK ,20X,6(5XI0HENO OF RUN)/tH1)

END

Cl SUBROUTINE REG4(UAVG)

G PURPOSE
C THIS SUBROUTINE PPCESSES THE COMPUTED ZP(I),
C CALCULATES UPCI) AND THE ERROR CRITERION
r.

C USAGE
C CALL REG4(UAVG)

SUBROUTINE REG4 (UAVG)
COMMON/ZYT/UXKSXZBKBZPAALPHARXXUPDLXDLS,
'IMAXNMAXNF
iIRSTNLASTFACTOTCOSTTPIV

C DIMENSIONS FOR COMMON
DIMENSION U(60),XK(60,60) ,S(6O),X(60),Z(60),BK(60,60),

'B (60)#ZP (60)
1,A(60,60),ALPHA(i0),V(60) ,XX(60),UPCSO)
UAV = 0.
00 40 1 = 1,IMAX
COEF = 0.
DO 41 J =1,NMAX
KNUM = J/2
JNUM =(J+1)12
IF(JNUM.NE.KNUM) GO TO 43
SIG = 2.
GO TO 44
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43 SIG =4.
44 COEF = COEF + SIG*XK(IgJ)*ZP(J)/(3e*OLS)
41 CONTINUE

UP(I) = COEF
UAV = UAV + (UP(I)-UCI))**2

40 CONTINUE
UAVG = SQRT(UAV/FLOAT(IMAXI)

99 RETURN
END

0

G SUBROUTINE REG2

D PURPOSE
0 THIS SUBROUTINE INTEGRATES XK(IJ)*XK(IJ) OVER
D ZI-VALUES TO OBTAIN NEW MATRIX BK(IJ)
'p

0 USAGE
C CALL REG2

SUBROUTINE REG2
COMMON/ZYT/U, XKS, X, ZBK, 8,ZP ,A ALPHA, RXXUPDLX ,DLS,

*IMAXqNMAXqNF
lIRSTNLAST ,FACTO, TCOSTTPIV

C DIMENSIONS FOR COMMON
DIMENSION U(60),XK(6O,60),S(60),X(6O),Z(60),BK(60,60),

'B(60) ,ZP(60)
iA(60,60) ,ALPHA(10) ,R(60) ,XX(60) ,UP(60)

C SIMPSON RULE

DO 5 I tN41AX
DO 5 J = 1,NMAX
COEFt =0.
COEF =+O.
DO 20 K =iIMAX
IF(K*EQ.1.OR*K.EQ*IMAX) GO TO 21.
IF(K*EQe2oORoKeEQ*IMAX-i) GO TO 23
KNUM = K/2
JNUM =(K+l)f2
IF(JNUM.E~eKNUtI) GO TO 23

22 SIG = 2.
GO TO 24

21 SIG =1t
GO TO 24

23 SIG =4.

24 Al SIG*XK(KgI)*XK(KgJ)/(3**DLX)
IF(IoGT~i) GO TO 7
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A2 = I*KKJ*(f3*DX
COEFi. = OEFi + A2

I COEF =COEF + Ai
20 CONTINUE

IF(I.GT~i) GO TO 8
B(J) = COEFI.

8 BK(IJ) = COEF/OLS
5 CONTINUE

RETURN
END

c SUBROUTINE REGI

r: PURPOSE
G THIS SUBROUTINE INTRODUCES THE REGULARIZATION TERMS
Cl IN THE MATRIX BK(IJ). THE FINAL REGULARIZED

C MATRIX IS A(IJ)

C USAGE
c CALL REG3

'F

SUBROUTINE REGS
COMMON/ZYT/UXKSXZBK, BZPAALPHARXXUPDLXDLS,
'IMAXNMAX,NF
IIRSTNLASTFACTOTCOSTTPIV

C ~DIMENSIONS FOR COMMNON
DIMENSION U(6D),XK(60,60),S(60¾#X(60),Z(60),BK(60,60),

*B(60) ,ZP(60)
1,A(60,60),ALPHA(iO),UG60),XX(60),UP(60)
00 51 I = iNMAX
DO 51 J = iNMAX

51. A(IJ) = 0.
DO 9 I = i,NMAX
DO 9 J = tNMAX
A(I,J) = BK(IJ)

9 CONTINUE
DO 63 N = NFIRSTNLAST
DO 60 I = 1,NMAX
NUM = N + 1.
DO 60 J = iNUM
DO 60 K = 1,NUM
NB = N/2
LABELi. = I - NB + J - I
LABEL? = I - NB + K - i
IF(LABELi.GT.NMAXOR.LABELi.LT~i) GO TO 60
Ai = CALC(NJDLS)
A2 = CALC(NKDLS)
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50 IF(LABEL2oGT.NMAXOR.LABEL2.LToI) GO TO 59
QQ = 0O5*Ai*A2*ALPHA(M4)*(iE 03'DLS)*'N
A(LABELiLABEL2) = A(LABELILABEL2) 4 Q+
GO TO 60

59 IF(LABEL2,GToNMAX) GO TO 58
LABEL2 = IABS(LABEL2) + t
GO TO 50

58 LABEL2 = 2*NFAX - LABEL2 + 1
GO TO 50

60 CONTINUE
63 CONTINUE

RETURN
END

C

C FUNCTION CALC

C PURPOSE
THIS FUNDTION SUB:3UTINE EVALUATES THE

6 COEFFICIENTS (BIN04IAL), ETC.
c CALLED BY REG3
D
D USAGE
c X=CALC(NKDLS)

FUNCTION CALC(NKDLS)

LL = 2*N
L K-
M =N- L
IF(KoEQI,ORK.Eq*N÷i) GO TO 10
It = 1
12 = i
13= 1i
00 1 I = I1L

i I1 = I1*I
00 3 I = iN

3 13 = I*13
00 2 I = Iti

2 12 =I 112
Xl = I3/(I1I*2)
X2 = (-1,)**K
CALC = XiX2
GO TO 99

10 IF(K*EQei) GO TO it
Xi = -to
CALC = Xi
GO TO 99
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ii Xi = (-I= )*K
CALC = Xi

99 RETURN
END

C SUBROUTINE QUA01

C PURPOSE
C SUBROUTINES QUADi AND QUAD2 SOLVE THE QUADRATIC
C PROGRAMMING PROBLEM, FIND THE VALUE OF X THAT
C MAXIMIZES
C AIX - if? X#8 X
C SUBJECT TO
C C X .LE. 0
C

C X *GE. 0
C
C USING DANTZIG'S MODIFIED SIMPLEX ALGORITHM
C (SEE JOHN Co G. BO3T, QUADRATIC PROGRAMMING, RAND
CMCNALLY, CHICAGO 19641 PP. 186-196)
C QUADI DEFINES THE INITIAL SIMPLEX TA5LEAU

USAGE
C CALL QUADi
C (ABCIIONKROWSCOLSABCDRESULTZEROiBASIS)

C DESCRIPTION OF PARAMETERS
C A - INPUT VECTOR OF LENGTH N THAT DEFINES
C THE LINEAR PART OF THE OBJECTIVE FUNCTION
C B - INPUT MATRIX (NIN) THAT DEFINES THE

SC QUADRATIC PART OF THE OBJECTIVE FUNCTION
CC - INPUT MATRIX (KIN) THAT DEFINES THE LEFT
CHAND PART OF THE CONSTRAINTS
C 0 - VECTOR OF LENGTH K THAT DEFINES THE RIGHT
C HAND SIDE OF THE CONSTRAINTS
C N - NUMBER OF ELEMENTS OF X
C K - NUMBER OF CONSTRAINTS
CROWS - N+K, THE NUMBER OF ROWS IN THE INITIAL
D SIMPLEX TABLEAU
CCOLS - 2'ROWS+i, THE NUMBER OF COLUMNS IN THE
C INITIAL SIMPLEX TABLEAU
C ABCA - THE INITIAL SIMPLEX TABLEAU, MATRIX OF
C SIZE (ROWSCOLS)
G RESULT - VECTOR OF LENGTH ROWS, THAT CONTAINS THE
C RESULTS OF THE QUADRATIC PROGRAMMING
C PROBLEM
CBASIS - VECTOR OF LENGTH ROWS, CONTAINING THE
C LOCATIONS OF THE BASIS VECTORS
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D THE BASIS VECTORS
0

SUBROUTINE QUADi(RESIJLTBASIS)
INTEGER ROWSqCOLSZEROtvBASIS
COMMON/ZYT/UXK,SXZBK, BZPAALPHARXXUPDLXDLS,
*IMAXNMAXNF
IIRSTNLAST, FACTOTCOST ,TPIV

D DIMENSION FOR COMMON
DIMENSION U(Sfl),XK(60,60),S(60),X(60),Z(60),BK(60,60),

'6(60) ,ZP(60)

COMMON/ZXT/48CO
DIMENSION C(2,60) ,D(2) ,ABCD(60,121),RESULT(60),ZEROI(i

'21) ,BASIS(60
1) ,IROW(i2i)

LOGICAL NOPIVT
COMMONfQUA02C/NOPIVT
N NMAX
Kz 1
ROWS = NMAX + K
COLS =2*(NMAX + K) + I
DO 57 I iq1NtIAX
C(iI) FACTO/DLS

57 CONTINUE
DCI) =FACTO

C N VARIBLES K CONSTRAINTS
DO 1 I=iROWS
DO i J=1,COLS

t ABCD(1,JJ=0.0
DO 2 Ii,9N
DO 2 J1,gN

2 ABCD(IJ) =-A(IJ)
DO 3 Ki=iK
I=N+Ki
AB3CD(IgI)=i*O
DO 3 J1,gN

3 ABCD(IJ)=C(KiJ)
DO 4 I1=1N
J=N+K+I

it ABCD(I,,J)=i*0
DO 5 Ki=1,K
J=2*N+KIKi
DO 5 I1,N

5 ABCDCIJ)=-C(KigI)
J=COLS
DO 6 1=19N

5 ABCD(1,J) = -B(I)
DO 7 KI=igK
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I=N+Ki.
7 A BCD (IIJ) =D(Ki)

DO 11 IflROWS
DO 1.2 JflCOLS

12 IROW(J)=ABCD(IJ)
it CONTINUE

CALL QUAD2(RDNSCOLSNKRESULT,ZEROIBASISTPIVTCOST

RETURN
END

C SUBROUTINE QUAD?

C PURPOSE
Cl (SEE QUADi)

c USAGE
rl ~CALL QUAD2(ABCGDROWSC:OLSN,,KRESULTZEROIBASIS)

C. DESCRIPTION OF PARAMETERS
C (SEE QUADi.)
C

SUBROUTINE QUAO2(ROIESCOLSNKRESULTZEROiBASISTPIV
*,TCOST)
INTEGER COLSZEROiR0415,BASISCOLNPIVROWPCPR
COMMON/ZXTfABCD
DIMENSION ABCD(6Ot1i2) ,RESULT(60),ZEROi(i2i),BASIS(60)
REAL NUMMULT

LOGICAL NOPIVI
COMMON/QUAD2CINOPIVT

C CLEAR ZERDi. VECTOR
DO 2 I=iCOLS

2 ZEROI(I)0O
C INSERT (N+K) ONES INTO ZEROi(N+i)

DO 3 I=iROWS
J=N+I

3 ZEROI(J)1i
C LOAD N COLUMN NUMBERS FROM VARIABLE V(i) INTO BASISII.)

DO 4 I=11N
14 BASIS(I)=ROWS+I

C LOAD K COLUMN NUMBERS FlkOM VARIABLE L(N+i) INTO
C BASIS(N+1.)

DO 9 I1iK
J=N+I

9 BASIS(J)3J
C ASSUME A NON STANDARD TABLE

17 NONSTD=O
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4 LOOK AT ZEROI VECTOR AND DETERMINE FOR A NONSTANDARD
C TABLE.....
C 1. PC=COLUMN NUMBER OF THE MISSING V VARIABLE
C 2. IV=V COLUMN NUMBER OF THE BASIC PAIR
C 3. IF CONDITION 1 AND 2 ARE PRESENT SET NONSTD=i

DO 5 I=19ROWS
J=I+ROWS
Ii=ZEROI(I)+ZEROI(J)
IF (Il-i) 69597

5 PC=J
NONSTD=i
GO TO 5

7 IV=J
NONSTD=i

5 CONTINUE
C IS THIS A NON STANDARD TABLE

IF (NONSTD*EQi) GO TO 8
C SCAN THE BASIS FOR IVOOLUMN NUMBER OF THE LARGEST
C NEGATIVE V(I) AND DETERMINE PC=COLUMN NUMBER OF L(I) TO
C BE ADDED TO THE BASIS

VNEG=0.0
DO 10 I=iROWS
COLN=BASIS(I)
IF (COLN.LE.eROWS) GO TO 10
TI=ABCD(ICOLS)
IF (TIGEVNEG) GO TO 10
VNEG=TI
IV=COLN
PC=COLN-ROWS

10 CONTINUE
SLOOK AT THE V(IV) RATIO AND ALL J(I) RATIOS AND

C DETERMINE THE VARIABLE HAVING THE SMALLEST NON NEGATIVE
C VALUE. THIS COLUMN NUMBER IS PR (THE PIVOT ROW), THE
C VARIABLE TO BE REMOVED

8 RATIO=IOE3?
NOPIVT=.TRUE.

DO 11 I=1,ROWS
COLN=BASIS(I)
DEN=ABCD(IPC)
NUM=ABCD(ICOLS)

IF(ABS(DEN) *LTe TPIV)GO TO it
IF (COLN.LE.ROWS) GO TO 13
IF (COLN.NEIV) GO TO I1

13 Ti=NUM/DEN
NOPIVT=.FALSE.

IF (TI.LE,0O0) GO TO 11
IF (Ti.GE.RATIO) GO TO iI
PR=COLN
PIVROW=I
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RATIO=Ti
11 CONTINUE

G ADO AND DELETE THE PROPER VARIABLES FROM THE BASIS AND
C ZEROI VECTORS

ZERO1 (PC) =1
ZEROI (PR) =0
BASIS(PIVROW) =PC
PR=PIVROW

NORMALIZE THE PIVOT ROW BY THE PIVOT ELEMENT
DEN=ABCO(PR, PC)
00 14 J=lCOLS

14 ABCO(PRIJ)=ABCO(PRJ) IDEN
C ZERO OUT THE REMAINING ELEMENTS OF THE PIVOT COLUMN

DO 18 I=1,ROWS
IF (I.EQ.PR) GO TO 18
MULT=-ABCO (I, PC)
IF (MULT.EQ.0.0) GO TO 18
DO 15 J=i1COLS

15 ABCD(IJ)=ABCD(IJ)+÷MiLT'ABCD(PRJ)
18 CONTINUE

0 ARE ANY OF THE BASIC VALUES STILL NEGATIVE
DO 16 I=iROWS

IF(ABCO(ICOLS) *LT, -ABS(TOOST))GO TO 17
16 CONTINUE
C TRANSFER THE LAST COLUMN TO THE SOLUTION VECTOR

00 1 I=1,ROWS
1- RESULT(I)=ABCD(ItCOLS)

RETURN
END
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THIS IS FOR A SYMMETRICAL UNINODAL MOL. WEIGHT DIST. USIN
REQUAD
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